Linear Programming Problem (LPP) , Formulation of LPP, LPP by graphical method.

Linear Programming Problem (LPP)

 

 Formulation of LPP.                                                              

 LPP is an optimization technique which is given in linear equations with the help of this we can find how to use limited resources to obtain a particular objectives these subject to the constraints are also linear nature.

Linear programming problem having three parts

(i)    Objective function         (ii)   Constraints            (iii)       Non-negativity restrictions

LPP with x and y decision variable

Max/min Z = c1 x + c2 y             (objective function)

Subject to


a11 x + a12 y (£,=,³) b1

a21 x + a22 y (£,=,³) b2

×                      ............................        Constraints

×

×

am1 x + am2 y (£,=,³) bm 

x, y ³ 0 (unrestricted non negativity)

Example

Maximize / Minimize

                     Z  = 7x + 4y

Subject to

             4x + 3  £ 200,                       

              5x – 7y  ³  30

           4x + 5y  = 85,     

            x ³ 0 y  ³ 0

Mathematical formulation of LPP. In this all the equation are linear with number of variable is maximized or minimized subject to a number of constraints those things are expressed in linear inequalities.

 

Decision variable

In this LPP we are to find out  a variables which are unknown these variables are called decision variables. It may takes non-negative values that is it is unrestricted in sign.

Constraints

Inequalities in terms of equation with decision variable are called constraints. In LPP the constraints are linear in nature.

Objective function

Find the objectives in model are called as objective function. It is max or minimized.

So by summarizing

(1)   Identify the decision variable from problem

(2)   Identify the constraints from problem

(3)   Identify the objective function from problem

 

Ex 1:  A company has to produce A and B two types of product. Each product has to be processed by three machines (i) moulding (M1) (ii) grinding (M2)
(iii) finishing (M
3) suppose machine M1 can be operated for total time of
2700 minutes. It takes 12 minute for an item of type A and 5 minutes for an item of type B.

Machine M2 is available for 2000 minutes and it takes 5 minutes for processing an item of type A and 10 minutes for an item of type B.

Machine M3 is available for 450 minutes and it takes for processing an item of type A and 2 minutes for an item of type B.

The profit per item of type A is 10 and that of per item of type B is 15 find the number of item of type A and B to be produced so as maximize the profit. Formulate the L.P.P.

 Ans. :

 Manufactured item types are two so that there are two decision variable

                    X  = A type total number of items

                    Y  = B type total number of items

The objective function Z is profit of company when A type of item manufacture is X item an B type of item manufactured by item profit per item y type A is 10 ` and B is ` 15 so maximize = 10x + 15y

Here the constraint will be time required to process X item of A and Y items of B on machine M1 which is run for maximum 2700 minutes.

So,     12x + 5y £ 2700                                                                   …(1)

A time required to process X item of A and Y items of B on machine M2 is maximum 2000 minutes

         5x + 10y  £ 2000                                                                   …(2)

Similarly for M3 

           2x + 2y £ 450                                                                     …(3)

Thus the L.P.P is

Maximize     Z  = 10x + 15y                                   …objective function

Subject to

             Constraints         12x + 5y  £ 2700

         5x + 10y  £ 2000    

           2x + 2y  £ 450

                     x  ³ 0        y ³ 0                         …non negative restriction

 

Ex2: A paper mill produces two grades of paper namely X and Y. Because of raw material restrictions, it cannot produces more than 400 tons of grade X and
300 tons of grade y in week. There are 160 production hours in week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs. 200 and Rs. 500 per ton. Formulate it as LPP.

                  

Ans. :

 Number of tons of grade X is denoted by x and number of tons of grade y is denoted by y. Profits per product of x is zero and per product of y is 500

             Max Z  = 200x + 500y

The required time for ton of product X and Y respectively is 0.2 and 0.4 hours and available hours is 160 per week

     0.2x + 0.4y  £ 160

Maximum production of X is 400 ton of grade X and 300 tons of grade Y in a week.

                    X  £ 400

                    Y  £ 300

So formulated LPP is

Maximize Z = 200x + 500y objective subject to conditions

Constraints                    X  £400

                    Y  £ 300

     0.2x + 0.4y  £ 160

y, x, ³ 0 non negative

Ex 3. Egg contains 6 units of vitamin A per gram and 7 units of vitamin B per gram and cost 12 paisa per gram. Milk contains 8 units of vitamin A per gram and 12 units of vitamin B per gram and cost 20 paisa per gram. The daily minimum requirement of vitamin A and vitamin B are 100 units and 200 units respectively. Formulate the problem as linear programming problem.

     

Ans. :

 From given information we have

 

Egg x

Milk y

Minimum requirement

Vitamin A

6

8

100

Vitamin B

7

12

200

Cost per gram

12

20

 

Minimum cost

                     Z  = 12x + 20y

Hence formulated LPP is

    Minimum Z  = 12x + 20y      objective

Subject

        
           6x + 8y   ³ 100  Constraints

         7x + 12y   ³ 200

                 x, y  ³ 0                   non negative

Ex 4   A firm makes two types of furniture chairs and tables. The contribution for each product as calculated by the accounting department is ` 20 per chair and ` 30 per table. Both products are processed on three machines M1, M2, M3. The time required (in hours) by each product and total time available per check on each machine are as follows.

Machine

Chair

Table

Available hours per week

M1

3

3

36

M2

5

2

50

M3

2

6

60

How should be the manufacturer schedule his production in order to maximise contribution? Formulate the problem as LPP.                               

Ans. :

 x is no. of chair produced

y is no. of table produced

Here feasible demand is non negative

x ³ 0             y ³ 0

Also a machine availability restriction per week are three so

           3x + 3y  £ 36         Constraints

           5x + 2y  £ 50

           2x + 6y  £ 60

                     x  ³ 0    y  ³ 0

There are profit per output is given profit = 20x + 30y

So from above data LPP formulation

                               Maximize Z  = 20x + 30y          (objective function)

                                               5x + 2y £  50

                                                2x + 6y  £  60

                                               x  ³  0          y  ³  0

Non negative restrictions

         

Explain

       (a) Solution       (b)  Feasible solution (c)        Optimal solution      (d)  Convex set   

 

 (a)  Solution :

 A set of decision variable which satisfies the constraints of linear programming problem is called as a solution to corresponding linear programming.

(b)   Feasible Solution :

 In LPP a solution which satisfies the non negative restriction is called as feasible solution to corresponding LPP.

(c)    Optimal Solution :

 In LPP corresponding feasible solution which optimizes the objective functions is called as optimal solution of that linear programming problem.

(d)   Convex set :

 A region in x – y plane is called as convex set or region if line segment which is created by joining two points in the set lies completely within the region.

 

Solution of LPP by graphical method.                                            

Following steps are in value in graphical method.

Step 1 :  Formulate mathematical problem

Step 2 :  Representing all the constraints of problem after plotting  a graph and identify the feasible region.

Step 3 :  Find all corner points of feasible region.

Step 4 :  Determine the value of objective function which is find from step 3.

Step 5 :  Optimizes the value of objective function after selecting the corner point. It gives the optimum feasible solution.


 E x1:-  Solve the following linear programming problem graphically.

Maximize Z = 60x + 75y

Subject to

X + 2y £ 70

2x + 1.5y £ 60

                                                             
                                                    X, y
³ 0                                                                                          

Ans. :

 Given LPP is

   Subject to     x + 2y  £ 70

                   2x + 1.5y  £ 60


                 x, y  ³ 0

First taking equalizing in given constraints, for finding feasible region 

             x + 2y  = 70

       2x + 1.5 y  = 60

             x + 2y  = 70

When x = 0  y = 35 

when y = 0, x = 70                              


             (0, 35)     (70, 0)

        2x + 1.5y  = 60

When x = 0     y =  =  = 40

When y = 0   x = 30

          (0, 40)     (30,0)                 

 

 

Ex2  Solve the following linear programming problem by graphically

Maximize z = 20x + 17y

Subject to 2x + 2y £ 22

12x + 10y £ 120

                x, y ³ 0                                                                                       

Ans. :

 Given LPP is

   Maximize  Z  = 20x + 17y

           2x + 2y  £ 22

       12x + 10y  £ 120

                X, y  ³ 0

Replacing inequalities into equalities

                  L1 :             2x + 2y  = 22

                  L2 :            12x + 10y   =  120

                x + y  =  11            

   when,    x = 0     y = 11        (0, 11)

                y  =  120

   When   x = 0     y = 12    (0, 12)

               y = 0     x = 10    (10, 0)  


There are four point OABC

\  Feasible region is a convex region OABC

Having point O(0, 0) A (10, 0)
B(0, 11) C(5, 6)

Here point C is a intersection point of
L1 and L2.

                     z  = 20x + 17y

                    z0  = 0                                            

                    zA  = z(10, 0) = 20 ´ 10 + 17 ´ 0 = 200

                    zB  = z(0, 11) = 20 ´ 0 + 17(11) = 187

                    zC  = z(5, 6) = 20(5) + 17(6) = 100 + 102 = 202

                 zmax  = zC = 202

 


Ex 4 Solve the following LPP graphically

      Minimize        Z = 2x1 + 4x2

      Subject to       6x1 + x2 ³ 18

                       x1 + 4x2 ³ 12

                       2x1 + x2 ³ 10

                       x1, x2 ³ 0                                                                 

Ans. :

 From given data

LPP is

Minimize                Z = 2x1 + 4x2

  Subject to   6x1 + x2 ³ 18

                     x1 + 4x2 ³ 12

                     2x1 + x2 ³ 10

                     x1, x2 ³ 0

first we find feasible region for that

we equalize each equation

          6x1 + x2  = 18                  x1 = 0      x2 = 18

                                                  x2 = 0      x1 = 3

             (0, 18)     (3, 0)

          x1 + 4x2  = 12                  x1 = 0      x2 = 3

                                                 X2 = 0      x1 = 12

               (0, 3)     (12, 0)

          2x1 + x2  = 10                                                      x2 = 0     x1 = 5

             (0, 10)     (5, 0)


 


                                                  x2 = 0     x1 = 5

             (0, 10)     (5, 0)

Put all these point on graph

Let point of intersection of L1 and L3 is G (2, 6) and point of intersection of L2 and L3 is H (4, 2)

The shaded region is feasible region of LPP

The minimum value of z will be at one of the point CHGB

        So         Z  = 2x1 + 4x2

               z(0, 18)  = 2 ´ 0 + 4 ´ 18 = 72

                z(2, 6)  = 2 ´ 2 + 4 ´ 6 = 28

                z(4, 2)  = 2 ´ 4 + 4 ´ 2 = 16

               z(12, 0)  = 2 ´ 12 + 4 ´ 0 = 24

out of these above point minimum value of z at point z(4, 2).

 


Popular posts from this blog

Assignment problem, Hungarian Method of Solution, Maximization Problems ,Unbalance Assignment problem, Multiple optimum Solution, Prohibited or Restricted Assignments